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Abstract—Meal delivery services provided by platforms with 

integrated delivery systems are becoming increasingly popular. 

This paper adopts a rolling horizon approach to solve the meal 

delivery routing problem (MDRP). To improve delivery efficiency 

in scenarios with high delivery demand, multiple orders are 

allowed to be combined into one bundle with orders from different 

restaurants. Following this strategy, an optimization-based four-

stage heuristic algorithm is developed to generate an optimal 

routing plan at each decision point. The algorithm first generates 

bundles according to orders’ spatial and temporal distribution. 

Secondly, we find feasible bundle pairs. Then, routes for delivering 

any single bundle or a bundle pair are optimized, respectively. 

Finally, the routes are assigned to available couriers. In 

computational experiments using instances from open datasets, 

the system’s performance is evaluated in respect of average click-

to-door time and ready-to-pickup time. We demonstrate that this 

algorithm can effectively process real-time information and assign 

optimal routes to the couriers. By comparing the proposed method 

with existing the-state-of-the-art algorithms, the results indicate 

that our method can generate solutions with higher service quality 

and shorter distance.   

Keywords—Meal delivery problem, pickup and delivery problem, 

rolling horizon method, heuristic algorithm. 

I. INTRODUCTION  

As the digital economy enables a variety of convenient 

daily services, the mobile app-based on-demand meal delivery 

market is booming worldwide. According to Statista [1], 

revenue in the online meal delivery industry is expected to grow 

at an annual rate of 9.9 percent from 2019 to 2023, bringing the 

market size to $53.786 billion. Grubhub, Deliveroo and Uber 

Eats are just a few examples of these online food delivery 

platforms, a business model that is rapidly gaining popularity 

around the world. 

With the rapid expansion of the market, growing 

competition arises among meal delivery platforms on providing 

services with higher quality and lower costs. Meal delivery 

platforms often encounter the following challenges when 

dealing with a large number of orders in reality. On the one 

hand, orders cannot be picked up on time or even cancelled by 

limited service capacity. On the other hand, due to limited 

information perceived by couriers, a delivery route without 

optimization results in a longer detour time and thus lowers the 

system’s service efficiency. Therefore, many strategies have 

been implemented to efficiently group the orders into bundles 

and then optimize the delivery routes accordingly. So that it can 

help improve the system's efficiency and reduce the cost.  

The service requests of meal delivery routing problem 

(MDRP) are often related to two important characteristics — 

dynamism and urgency [2]. Dynamism is defined by the fact 

that requests and system decisions are placed over time. 

Urgency indicates the high time sensitivity of the orders, which 

should be assigned and delivered within a short time window. 

The precise definition of these important concepts keeps 

evolving. In this paper, we use the definition from van Lon et 

al. [3]. They found that there is a nonlinear relationship between 

dynamism, urgency, and “cost”. This matches the work of Lund 

et al. [4] suggesting that as long as the optimization system 

receives requests before actual service time, despite a large 

number of dynamic requests, it is still possible to get a good 

solution.  

A common strategy for solving such dynamic problems is 

incorporating rolling horizon technique in time-dependent 

model, i.e., optimizing tasks periodically [2, 5, 6]. The purpose 

of this study is to develop a heuristic algorithm for solving 

MDRP with a rolling horizon technique. To improve the 

delivery efficiency in scenarios with high service demand, the 

algorithm allows multiple bundles from different restaurants to 

be combined into a bundle pair and delivered on one route. In 

this paper, we limit the restaurant number of bundle pairs to two 

for the simplicity of the model. 

In the existing literature, this Meal Delivery Routing 

Problem (MDRP) generally belongs to the category of Dynamic 

Vehicle Routing Problem (DVRP) and is closely related to the 

Dynamic Delivery Problem (DDP) [7]. It is one of the 

important classes of Dynamic Pickup and Delivery Problems 

(DPDP) that have emerged recently. In DPDP, the input data 

revealed over time is usually user requests. The solution 

strategy uses the dynamic information of requests to specify 

what actions should be performed over time [8]. As requests for 

on-demand services grow, many researchers are devoted to 

investigating on-demand dynamic delivery systems, not only 
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from a theoretical [9,10,11], but also from a practical 

perspective [12,13,14].  

Our algorithm is developed based on the meal delivery 

model proposed by [7]. The paper aims to find an exact solution 

to the delivery problem to minimize total service time of all 

orders with all order information known before optimization, 

which is far from reality. Our method is inspired by the pivotal 

work of [2]. One of the differences between our works lies in 

the generation of bundles. The bundle generation in [2]’s model 

is the result of a single-step optimization. In our model, we 

optimize bundles generation by considering orders’ temporal 

and spatial distribution. In addition, our model focuses on 

minimizing the freshness loss and maximizing the delivery 

volume per unit of time, while their model concerns more about 

the cost of couriers.  

The main contributions of this paper are threefold: i) We 

propose a heuristic algorithm to deal with bundle generation, 

bundle pairing, route optimization, and task assignment in 

MDRP. ii)A comparison with an existing algorithm and exact 

solution is conducted for assessing system efficiency. iii) 

Computational results of our algorithm are presented for 

evaluating algorithm performances.  

The remainder of this paper is organized as follows: 

Section II describes the problem formulation. A heuristic 

algorithm is developed in Section III to find optimal solutions. 

Section IV conducts result analysis on algorithm performance 

and system performance. Section V draws conclusions and 

provides an outlook for future works. 

II. PROBLEM FORMULATION 

Consider an on-demand meal delivery system served by a 

fleet of couriers, who are crowd-sourced freelancers and tend 

to work for a shift voluntarily. As orders arrive throughout a 

service day and order information is revealed dynamically, 

instructions are sent to couriers based only on known requests. 

In order to solve this dynamic problem, a rolling-horizon 

approach is adopted in this paper. We separate the whole 

service time evenly into multiple small time intervals of f 

minutes. The system is then optimized at the decision point 𝑡𝑜𝑝𝑡, 

which is the end of each time interval.  

For time interval  𝑇 = {𝑡: 𝑡𝑜𝑝𝑡 − 𝑓 <  𝑡 ≤ 𝑡𝑜𝑝𝑡} , orders 

placed in T or unserved in previous interval are waiting to be 

assigned at 𝑡𝑜𝑝𝑡. R is the set of restaurants in the system. Each 

restaurant r ∈ 𝑅 has an associated location. 𝑈𝑟  is the set of 

orders to be assigned at restaurant r. Taking order o ∈ 𝑈𝑟  as an 

example, its information includes placement timestamp 𝑃𝑜 , 

associated restaurant 𝑅𝑜 (which is r here), drop-off position 𝐷𝑜, 

and ready timestamp 𝑟𝑜. For courier c, information includes the 

start-timestamp 𝑆𝑐  and the off-timestamp 𝑂𝑐  of the day, as well 

as the current location of the courier 𝐿𝑐. 

Two strategies are considered for improving delivery 

efficiency. On the one hand, orders from a same restaurant are 

allowed to be grouped into a bundle, denoted as b, and delivered 

on one route. Here we regard ready timestamp 𝑟𝑜  of the latest 

ready order o in the bundle b as the bundle’s ready timestamp 

𝑟𝑏. Note that any bundle b can only be picked up after its ready 

timestamp 𝑟𝑏. On the other hand, up to two bundles from two 

different restaurants can be seen as a bundle pair and be 

delivered on one route.  

A available courier that we can give instructions to at 𝑡𝑜𝑝𝑡 

should be the courier c on duty ( 𝑆𝑐 ≤ 𝑡𝑜𝑝𝑡  ≤  𝑂𝑐). In addition, 

he is neither in route to pick up orders nor delivering orders at 

this decision point. Note that a courier c cannot receive new 

instructions after his off-timestamp 𝑂𝑐 but can keep delivering 

orders which are assigned before. After receiving instructions, 

couriers must take the bundles according to the instruction and 

deliver orders according to the optimized route. In this paper, 

we consider a fixed pick-up service time when a courier is 

picking up a bundle in a restaurant. This service time is 

independent of the number of orders in the bundle. Similarly, a 

drop-off service time is counted on a courier’s arrival at a drop-

off location. A flow chart to represent the problem sequence at 

a decision point is shown in Figure 1. Figure 2 demonstrates the 

timeline of  events to deliver an order. 

 

Fig. 1. Flow chart of problem sequence within one optimization 

  

Fig. 2. Timeline of  events to deliver an order 

For the optimization at each decision point, we have two 

goals. The first is to improve delivery efficiency, which means 

that couriers can deliver more orders per unit time. The second 

is to reduce the freshness loss of orders.  

For clarity, we list some important notations and related 

descriptions used in section Ⅲ below: 

TABLE I.  NOTATION AND DESCRIPTION 

Notation Description 

𝑈𝑟 Set of all orders which are placed in restaurant r 

C Set of all couriers available at this decision point 
S Set of bundles of all restaurants in the system 

Q Set of all single bundles and feasible bundle pairs 

𝑁𝑡𝑜𝑡𝑎𝑙 Total number of all orders placed in the system 

 𝑁𝑜,𝑟 Total number of all orders placed in the restaurant r 



𝑁𝑑 Number of available couriers who are available at this 
decision point 

𝑁𝑏,𝑟 Number of bundles in a restaurant 

𝑁𝑜,𝑞  Number of orders in a route q 

𝑟𝑏 Last ready timestamp of order in bundle b 

𝑟𝑜 Ready timestamp of order o 

𝑅𝑜 Associated restaurant of order o. 

𝑅𝑏 Associated restaurant of bundle b 

𝐷𝑜 Drop-off position of order o. 

𝛱𝑞,𝑐 Pick up timestamp if route q is assigned to courier c 

𝑇𝑞 Time to deliver all orders of  route q according to the 

optimized route 
β Penalty parameter for delivery delay 

𝛼 Pick up delay tolerance time 

θ  Penalty parameter for freshness loss 

o Order 

r restaurant 
c Courier in set C 

q Single bundle or bundle pair in set Q with an optimized 

route (we also call it a “route” in this paper) 

t Deliver sequence number in optimized route 

 

III. A HEURISTIC ALGORITHM FOR THE MEAL DELIVERY   

ROUTING PROBLEM 

The algorithm for optimizing the delivery strategies can be 

divided into four steps. The first step is to combine unassigned 

orders into bundles for each restaurant. Secondly, the generated 

bundles are matched in pairs to find the feasible bundle pairs 

that can be picked up by one courier. Then, delivery routes of 

all generated bundles and bundle pairs are optimized to 

minimize delivery time. Finally, optimized routes are assigned 

to appropriate couriers. 

A. Bundle Generation 

To determine the number of bundles in restaurant r, we 

first give a rough estimation on the target bundle size K at 𝑡𝑜𝑝𝑡 

as follows: 

𝐾 =  
𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑑

 

The value is then compared with the number of available 

couriers 𝑁𝑑  at this decision point, and the smaller value is taken 

as the number of bundles 𝑁𝑏,𝑟 . This can help us avoid the 

situation that there are too many bundles to be taken by couriers. 

𝑁𝑏,𝑟  is defined as below: 

𝑁𝑏,𝑟 = min { 
 𝑁𝑜,𝑟

𝐾
, 𝑁𝑑} 

With a known target bundle number 𝑁𝑏,𝑟 of restaurant r, 

we follow the steps below to get a bundle list for the restaurant. 

1) Generating a Draft List of Bundles Considering Spatial 

Dimension 

Aggregation degree, adopted as a measure of  cost to 

deliver a bundle, is defined as the sum of travel distance 

between the drop-off positions of any two orders in the bundle. 

First, we set up a binary variable 𝐵𝑏,𝑜 . If order o ∈ 𝑈𝑟 is in 

bundle b, 𝐵𝑏,𝑜  = 1. Otherwise, 𝐵𝑏,𝑜  = 0. Then we define the 

variable Aggregation Cost: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡(𝑏)

= ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑜1
, 𝐷𝑜2

)

𝑜2∈𝑈𝑟𝑜1∈𝑈𝑟

∗ 𝐵𝑏,𝑜1

∗ 𝐵𝑏,𝑜2 

A draft list of bundles considering spatial dimension is 

generated when the sum of aggregation cost of all bundles is 

minimized: 

Min  ∑ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑏)𝑏                     (1a) 

s.t.  ∑ 𝐵𝑏,𝑜𝑏  = 1, ∀o ∈ 𝑈𝑟                       (1b) 

Here (1b) indicates that each order can only appear in one 

bundle. According to value of the variable 𝐵𝑏,𝑜, we can obtain 

a draft bundle list 𝐵𝑟,𝑑  of the restaurant r. This list can tell us 

the order information in each bundle. 

2) Further Optimizing Bundle List Considering Temporal 

Dimension 

We have two objectives to consider in temporal dimension. 

One is to reduce the sum of delivery time of all bundles. The 

other is to reduce the sum of all orders’ delay time. Combine 

these two objectives into one total objective function. Then we 

can optimize the draft bundle list 𝐵𝑟,𝑑  in this Procedure 1.  

Procedure 1: Further Optimization 

Input: 𝑈𝑟 , set of all orders which are placed in restaurant r.  

             𝐵𝑟,𝑑, the draft bundle list which is generated above. 

Output: 𝐵𝑟,𝑛𝑒𝑤, improved list of bundles. 

1： /*  Initial construction 

2： 𝐵𝑟,𝑛𝑒𝑤             𝐵𝑟,𝑑 

3：  𝐶𝑜𝑠𝑡 (𝑏)  = 𝑆𝑒𝑛𝑑𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑏) + 𝛽 ∗
∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑑𝑒𝑙𝑎𝑦(𝑜)𝑜∈𝑏  

4： Temporal Cost = ∑ 𝐶𝑜𝑠𝑡(𝑏)𝑏∈𝐵𝑟
 

5： For o ∈ 𝑈𝑟  do: 

6：     Remove o from its current bundle 𝑏𝑜 

7：     List all bundles (which contains 𝑏𝑜), find a 

bundle 𝑏𝑛𝑒𝑤 to re-insert o to achieve minimum 

Temporal Cost 

8：     Update 𝐵𝑟,𝑛𝑒𝑤 with inserting o into 𝑏𝑛𝑒𝑤 

9： End 

10： return 𝐵𝑟,𝑛𝑒𝑤 

 

3) Assign Priority Levels to Bundles 

Based on the updated bundle list 𝐵𝑟,𝑛𝑒𝑤  in Step 2, bundles 

are assigned priority levels according to the following rules: 

(1) The bundles with more orders have higher priority 

levels. 

(2) If two bundles with same number of orders, the one 

have earlier ready time has higher priority level.. 

When couriers are limited in the system, bundles with 

higher priority levels will be assigned to couriers first. 



B. Combination of Feasible Bundle Pairs 

Considering restaurants with close locations, bundles of 

two restaurants are allowed to be grouped together for a higher 

delivery efficiency of a route. A bundle pair is regarded as 

feasible if its second bundle doesn’t suffer an excessive 

freshness loss in the route, i.e., the courier can get the second 

bundle within a tolerable delay time. 

Procedure 2: Generate Feasible Bundle Pair 

Input: S, set of all bundles in all restaurants,  

𝛼, pick up delay tolerance time ( 𝛼 ≥ 0 ) 

Output: Set Q of singles bundles and bundle pairs to be 

assigned. 

1： /* Initial construction 

2： 𝑃            ∅ 

3： For b1  ∈ S do:  

4：   For b2 ∈ S \ {b1} do: 

5：      If 𝑟𝑏1 + 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝑅𝑏1, 𝑅𝑏2) ≤  𝑟𝑏2 + 𝛼  
 then: 

6：              P            P ∪ {b1, b2} 

7：       End 

8：    End 

9： End 

10： Q            P ∪ S 

11： return Q 

 
 

C. Calculation of Shortest Delivery Time of Bundles and 

Bundle Pairs 

For the previously generated bundles and bundle pairs, we 

need to optimize their delivery routes to achieve the shortest 

delivery time. For ∀q ∈ 𝑄 , we need to follow the below steps 

to optimize the route: 

First, we sort the orders in each bundle and each bundle 

pair according to their ready timestamp, and label them 

accordingly. Then, we set up a two-dimensional binary matrix 

R to represent the route for delivery. The first dimension means 

the sequence of delivery. The second dimension means the tag 

of order, e.g., if order 1 is delivered as the second order in the 

route, R [2,1] = 1. The optimization problem is formulated as 

follows: 

𝑀𝑖𝑛(∑ 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝑟, 𝐷𝑜)

𝑜∈𝑞

∗ 𝑅[1, 𝑜]  + 

∑ ∑ ∑ 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝐷𝑜1, 𝐷𝑜2)

𝑜1∈𝑞

 ∗ 𝑅[𝑡, 𝑜1] ∗ 𝑅[𝑡 + 1, 𝑜2]

𝑜2∈𝑞

) 

𝑁𝑞

𝑡=1

 

(2a) 

s.t.  ∑ 𝑅[𝑡, 𝑜]𝑜∈𝑞  = 1, ∀ t ∈ [1, 𝑁𝑞]                 (2b) 

∑ 𝑅[𝑡, 𝑜]𝑁𝑞
𝑡=1  = 1,  ∀ 𝑜 ∈ 𝑞                          (2c) 

Here constraints (2b) indicate that in each time sequence of 

delivery, the courier can deliver only one order. Constraints (2c) 

guarantee that each order can only be delivered once. 

D. Assignment Model 

Based on the set Q of available single bundles and bundle 

pairs and their optimized delivery route, tasks are assigned to 

available couriers. The goal of the assignment is to improve 

delivery efficiency and reduce the residence time of orders. 

Here the residence time of an order means the time difference 

between the pickup timestamp and its ready timestamp. We 

define the variable: 

𝑋𝑞,𝑐  ∈ {0,1}, indicates whether route q is assigned to 

courier c. 

The delivery efficiency E of courier c delivering route 

𝑞 ∈ 𝑄 is calculated as below: 

E(q,c) = 
𝑁𝑞

(𝛱𝑞,𝑐+𝑇𝑞− 𝑇𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒) 
 

It's important to note here that no matter whether the 

courier picks up a single bundle or a bundle pair, here 𝑁𝑞 

denotes the total number of orders in the route q. We take the 

total time the courier needs to complete the task as the 

denominator. The optimization time is ignored here.  

Freshness loss FL is measured by the difference between 

the picks up timestamp of the second bundle and the last ready 

timestamp in the second bundle. It is given by: 

FL(q,c) = 𝛱𝑞,𝑐 – max
𝑜∈𝑞

{𝑒(𝑜)} 

Using these definitions, the optimization problem is 

formulated as: 

max ∑ ∑  [(𝐸(𝑞, 𝑐) − 𝜃 ∗ 𝐹𝐿(𝑞, 𝑐)] ∗ 𝑋𝑞,𝑐𝑞∈𝑄𝑐 − ∑ 𝑝 ∗ (1 − 𝑦
𝑜

)𝑜                 

(3a) 

s.t.  ∑ 𝑋𝑞,𝑐𝑞∈𝑄  ≤ 1, ∀ c ∈ C                          (3b) 

∑ 𝑋𝑞,𝑐c ∈ C  ≤ 1, ∀ 𝑞 ∈ 𝑄                        (3c) 

∑ ∑ 𝑋𝑞,𝑐𝑞∈𝑄(𝑜)c ∈ C ≤ 1, ∀ 𝑜 ∈ 𝑈                        (3d) 

∑ ∑ 𝑋𝑞,𝑐𝑞∈𝑄(𝑜)c ∈ C  = 𝑦𝑜, ∀ 𝑜 ∈ 𝑈                        (3e) 

Constraints (3b) indicate that a courier can only be 

assigned one route. Constraints (3c) guarantee that a route can 

only be assigned to one courier. Constraints (3d) guarantee that 

the assigned routes cannot contain the same order more than 

once. Constraints (3e) guarantee that if an order is not included 

in any of the routes assigned to real couriers, a penalty p is 

added to the objective value. 

IV. COMPUTATIONAL STUDY 

In this computational study section, two indexed are 

adopted to assess the algorithms and the dynamic system’s 

performance: 

1) The average click-to-door time (aCtD) of all orders 

assigned to couriers in the system. Click-to-door time (CtD) 

of an order indicates the difference between its drop-off 

timestamp and its placement timestamp. 



2) The average ready-to-pickup time (aRtP) of all orders 

assigned to couriers in the system. Ready-to-pickup time 

(RtP) of an order indicates the difference between its 

pickup timestamp and its ready timestamp of an order. 

A. Algorithm Performance in Different Data Size Insatnces 

We generate instances with order, restaurant and courier 

information based on open datasets provide by [15] to test the 

algorithm’s performance. Table Ⅱ shows the characteristics of 

the instances. Table Ⅲ demonstrates the performance of the 

algorithm in different instances. 

TABLE II.  COMPARISON OF CHARACTERISTICS OF DIFFERENT 

INSTANCES 

Instance 
Number of 

Orders 

Number of 

Couriers 

Number of 

Restaurants 

S1 20 8 4 

S2 40 16 8 

S3 60 24 12 

S4 100 40 20 

S5 200 80 40 

TABLE III.  COMPARISON OF ALGORITHM PERFORMANCE OF DIFFERENT 

INSTANCES 

Instance 
Optimization Time 

(s) 

CtD  

(min) 

RtP  

(min) 

S1 1.67s 34.00 2.40 

S2 5.26s 33.83 1.43 

S3 12.34s 32.97 2.02 

S4 40.64s 32.88 2.64 

S5 186.71s 32.81 2.66 

As can be seen from Table Ⅲ, the optimization time do 

exponential growth as the number of orders increase. In the five 

instances, the CtD and RtP lie around 33 minutes and within 3 

minutes, respectively. The problem scale has no obvious 

impacts on the two indexes.  In addition, we found that CtD has 

a slight advantage in instances with more orders.  

B. System Performance 

Instances with service period of 900 minutes are selected 

for testing the algorithm in dynamic processes. The full 

introduction of the datasets can be found in [15]. For clarity, we 

list the key characteristics of the instances in Table IV. 

TABLE IV.  COMPARISON OF CHARACTERISTICS OF DIFFERENT 

INSTANCES 

Instance 
Number 

of orders 

Preparation time 

multifaction factor 

Number of 

restaurants 

Courier 

velocity 

(m/min) 

D1 252 1 93 320 

D2 252 1.25 93 320 

D3 252 1 93 427 

D4 242 1 54 320 

D5 242 1.25 54 320 

D6 505 1 116 320 

 

In order to study the impact of different optimization time 

frequencies on the system, four instances are optimized with 

time intervals of 5 minutes, 10 minutes, and 15 minutes, 

respectively.  

TABLE V.  COMPARISON OF SYSTEM PERFORMANCE WITH VARIED 

OPTIMIZATION TIME INTERVALS 

Time 

interval 
5 minutes 10 minutes 15 minutes 

Instance 
aCtD 

(min) 

aRtP 

(min) 

aCtD 

(min) 

aRtP 

(min) 

aCtD 

(min) 

aRtP 

(min) 

D1 30.83 1.94 31.43 2.65 32.65 3.87 

D2 33.94 1.93 34.57 2.64 35.72 4.25 

D3 27.94 1.50 29.81 2.29 29.91 2.83 

D6 31.83 2.43 32.35 2.89 32.74 3.58 

 

From Table V, we can find that a decrease in optimization 

time interval leads to shorter aCtD and aRtP in all the instances.  

Therefore, we select 5 minutes as the default time interval 

hereinafter. 

Fig. 3 and Fig. 4 present the distribution of CtD and RtP in 

four instances, respectively. Fig. 1 illustrates that in most time 

intervals, orders can be delivered to customers between 20 to 

40 minutes.  As depicted in Fig. 2, the RtP is within three 

minutes for most of the time intervals. However, orders in a few 

time intervals suffer from a severe freshness loss due to high 

demand and courier shortage in peak hours. 

 

 

Fig. 3. Distribution of average click-to-door time in different time intervals in 

four instances 



 

Fig. 4. Distribution of average ready-to-pickup time in different time intervals 

in all instances 

C. Algorithm Comparison 

A comparison of the solution obtained by our algorithm 

and an existing algorithm proposed by [2] is conducted. The 

results in Table Ⅵ indicate that our algorithm improves aCtD 

and aRtP of the system slightly. We also compare the solutions 

obtained by our algorithm and the exact solution proposed by 

[4]. The details are demonstrated in Table Ⅶ. 

TABLE VI.  COMPARISON OF SOLUTIONS OBTAINED BY OUR ALGORITHM 

AND EXISTING ALGORITHM 
 

Four-stage heuristic 

algorithm 
Algorithm in [3] 

Instance 
aCtD 

(min) 

aRtP 

(min) 

aCtD 

(min) 

aRtP 

(min) 

0o50t100s1p100 

(D1) 
30.83 1.94 31.19 2.52 

0o50t100s1p125 

(D2) 
33.94 1.93 34.67 2.27 

0r50t100s1p100 

(D4) 
31.41 2.11 32.46 2.14 

0r50t100s1p125 

(D5) 
35.88 1.41 36.75 2.16 

TABLE VII.  COMPARISON OF SOLUTIONS OBTAINED BY OUR ALGORITHM 

AND EXACT SOLUTION 
 

Four-stage heuristic 

algorithm 
Exact solution in [4] 

Instance 
aCtD 

(min) 

aRtP 

(min) 

aCtD 

(min) 

aRtP 

(min) 

0o50t100s1p100 

(D1) 
30.83 1.94 29.81 1.46 

0o50t100s1p125 

(D2) 
33.94 1.93 33.40 1.23 

0r50t100s1p100 

(D3) 
31.41 2.11 30.76 1.13 

0r50t100s1p125 

(D4) 
35.88 1.41 34.66 0.97 

V. CONCLUSION 

This paper proposed a four-stage rolling horizon 

optimization algorithm to solve MDRP. The method can be 

employed based on real-time order information. The algorithm 

first generates bundles according to orders’ spatial and temporal 

distribution. For improving delivery efficiency, up to two 

bundles are allowed to be delivered on one route. Thus, 

secondly, we find feasible bundle pairs. Then, routes for 

delivering any single bundle or a bundle pair are optimized, 

respectively. Finally, the routes are assigned to available 

couriers.  

Through result analysis, we can conclude that our 

algorithm is able to solve MDRP with up to 200 orders within 

about 3 minutes. Additionally, slightly improved service 

quality is observed in scenarios with higher demand. Through 

a comparison of the dynamic system solved with different 

optimization frequencies, smaller aCtD and aRtP are obtained 

when reducing the time interval. According to the distribution 

of aCtD and aRtP of orders, we find that orders in most time 

intervals can be picked up and delivered in time. A comparison 

of our algorithm with the existing algorithm and exact solutions 

is conducted as well. Our algorithm is able to produce more 

efficient and accurate solutions than the existing algorithm. 

As limitations of this work, the heuristic algorithm 

considers no load capacity of couriers, which plays a great role 

when serving a huge number of orders in reality. Thus, we will 

include this constraint to improve the algorithm in the future. 

REFERENCE 

[1] J. Wang, X. Shen, X. Huang, and Y. Liu, “Influencing Factors of the 
Continuous Usage Intention of Consumers of Online Food Delivery 

Platform Based on an Information System Success Model,” Frontiers in 

Psychology, vol. 12, Aug. 2021. 

[2] D. Reyes, A. Erera, M. Savelsbergh, S. Sahasrabudhe, and R. O’Neil. The 

meal delivery routing problem. Optimization Online, 2018. 

[3] R. R. S. van Lon, E. Ferrante, A. E. Turgut, T. Wenseleers, G. Vanden 

Berghe, and T. Holvoet, “Measures of dynamism and urgency in 

logistics,” European Journal of Operational Research, vol. 253, no. 3, pp. 

614–624, Sep. 2016. 

[4] Karsten Lund, Oli B.G. Madsen,  and Jens M. Rygaard. "Vehicle routing 

problems with varying degrees of dynamism." Technical Report IMM-

REP-1996-1, Department of Mathematical Modeling, The Technical 

University of Denmark, May 1996. 

[5] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, "Making dynamic 

ride-sharing work: The impact of driver and rider flexibility, 
"Transportation Research Part E: Logistics and Transportation Review, 

vol.91, pp. 190 -- 207, Jul. 2016. 

[6] X. Wang, N. Agatz, and A. Erera, "Stable Matching for Dynamic Ride-

Sharing Systems," SSRN Electronic Journal, 2014. 

[7]  B. Yildiz and M. Savelsbergh, “Provably High-Quality Solutions for the 

Meal Delivery Routing Problem,” Transportation Science, vol. 53, no. 5, 

pp. 1372–1388, Sep. 2019. 

[8] G. Berbeglia, J. Cordeau and G. Laporte, "Dynamic pickup and delivery 

problems," European Journal of Operational Research, vol. 202, (1), pp. 

8-15, 2010. 

[9] C. Archetti, D. Feillet, and M. G. Speranza, “Complexity of routing 

problems with release dates,” European Journal of Operational Research, 

vol. 247, no. 3, pp. 797–803, Dec. 2015. 

[10] M. W. Ulmer, B. W. Thomas, and D. C. Mattfeld, “Preemptive depot 

returns for dynamic same-day delivery,” EURO Journal on 

Transportation and Logistics, Apr. 2018. 

[11] M. A. Klapp, A. L. Erera, and A. Toriello, “The One-Dimensional 

Dynamic Dispatch Waves Problem,” Transportation Science, vol. 52, 

no. 2, pp. 402–415, Mar. 2018. 



[12] I. Dayarian and M. Savelsbergh, “Crowdshipping and Same‐day 
Delivery: Employing In‐store Customers to Deliver Online 

Orders,” Production and Operations Management, vol. 29, no. 9, Jun. 

2020. 

[13] S. A. Voccia, A. M. Campbell, and B. W. Thomas, “The Same-Day 

Delivery Problem for Online Purchases,” Transportation Science, vol. 

53, no. 1, pp. 167–184, Feb. 2019. 

[14] N. Azi, M. Gendreau, and J.-Y. Potvin, “A dynamic Vehicle routing 

problem with multiple delivery routes,” Annals of Operations Research, 

vol. 199, no. 1, pp. 103–112, Oct. 2011. 

[15] “Meal Delivery Routing Problem Test Instances.” GitHub. 

https://github.com/grubhub/mdrplib (accessed Nov. 11, 2022). 

https://github.com/grubhub/mdrplib

