
A Four-stage Heuristic Algorithm for Solving On-

demand Meal Delivery Routing Problem

Lejun Zhou

Zhejiang University/University of Illinois

at Urbana–Champaign Institute

Zhejiang University

Hangzhou, China

Anke Ye

College of Civil Engineering and

Architecture;

Zhejiang University/University of Illinois

at Urbana–Champaign Institute

Zhejiang University

Hangzhou, China

Simon Hu *

Zhejiang University/University of Illinois

at Urbana–Champaign Institute; College

of Civil Engineering and Architecture

Zhejiang University

Hangzhou, China

Abstract—Meal delivery services provided by platforms with

integrated delivery systems are becoming increasingly popular.

This paper adopts a rolling horizon approach to solve the meal

delivery routing problem (MDRP). To improve delivery efficiency

in scenarios with high delivery demand, multiple orders are

allowed to be combined into one bundle with orders from different

restaurants. Following this strategy, an optimization-based four-

stage heuristic algorithm is developed to generate an optimal

routing plan at each decision point. The algorithm first generates

bundles according to orders’ spatial and temporal distribution.

Secondly, we find feasible bundle pairs. Then, routes for delivering

any single bundle or a bundle pair are optimized, respectively.

Finally, the routes are assigned to available couriers. In

computational experiments using instances from open datasets,

the system’s performance is evaluated in respect of average click-

to-door time and ready-to-pickup time. We demonstrate that this

algorithm can effectively process real-time information and assign

optimal routes to the couriers. By comparing the proposed method

with existing the-state-of-the-art algorithms, the results indicate

that our method can generate solutions with higher service quality

and shorter distance.

Keywords—Meal delivery problem, pickup and delivery problem,

rolling horizon method, heuristic algorithm.

I. INTRODUCTION

As the digital economy enables a variety of convenient

daily services, the mobile app-based on-demand meal delivery

market is booming worldwide. According to Statista [1],

revenue in the online meal delivery industry is expected to grow

at an annual rate of 9.9 percent from 2019 to 2023, bringing the

market size to $53.786 billion. Grubhub, Deliveroo and Uber

Eats are just a few examples of these online food delivery

platforms, a business model that is rapidly gaining popularity

around the world.

With the rapid expansion of the market, growing

competition arises among meal delivery platforms on providing

services with higher quality and lower costs. Meal delivery

platforms often encounter the following challenges when

dealing with a large number of orders in reality. On the one

hand, orders cannot be picked up on time or even cancelled by

limited service capacity. On the other hand, due to limited

information perceived by couriers, a delivery route without

optimization results in a longer detour time and thus lowers the

system’s service efficiency. Therefore, many strategies have

been implemented to efficiently group the orders into bundles

and then optimize the delivery routes accordingly. So that it can

help improve the system's efficiency and reduce the cost.

The service requests of meal delivery routing problem

(MDRP) are often related to two important characteristics —

dynamism and urgency [2]. Dynamism is defined by the fact

that requests and system decisions are placed over time.

Urgency indicates the high time sensitivity of the orders, which

should be assigned and delivered within a short time window.

The precise definition of these important concepts keeps

evolving. In this paper, we use the definition from van Lon et

al. [3]. They found that there is a nonlinear relationship between

dynamism, urgency, and “cost”. This matches the work of Lund

et al. [4] suggesting that as long as the optimization system

receives requests before actual service time, despite a large

number of dynamic requests, it is still possible to get a good

solution.

A common strategy for solving such dynamic problems is

incorporating rolling horizon technique in time-dependent

model, i.e., optimizing tasks periodically [2, 5, 6]. The purpose

of this study is to develop a heuristic algorithm for solving

MDRP with a rolling horizon technique. To improve the

delivery efficiency in scenarios with high service demand, the

algorithm allows multiple bundles from different restaurants to

be combined into a bundle pair and delivered on one route. In

this paper, we limit the restaurant number of bundle pairs to two

for the simplicity of the model.

In the existing literature, this Meal Delivery Routing

Problem (MDRP) generally belongs to the category of Dynamic

Vehicle Routing Problem (DVRP) and is closely related to the

Dynamic Delivery Problem (DDP) [7]. It is one of the

important classes of Dynamic Pickup and Delivery Problems

(DPDP) that have emerged recently. In DPDP, the input data

revealed over time is usually user requests. The solution

strategy uses the dynamic information of requests to specify

what actions should be performed over time [8]. As requests for

on-demand services grow, many researchers are devoted to

investigating on-demand dynamic delivery systems, not only

*Corresponding author. Email: simonhu@zju.edu.cn (Simon Hu)

This study was supported in part by the Zhejiang University Global
Partnership Fund with the University of Sydney and University of Cambridge,

the ZJU-UIUC Joint Research Centre Project of Zhejiang University

(DREMES202001) and led by Principal Investigator Simon Hu.

mailto:simonhu@zju.edu.cn

from a theoretical [9,10,11], but also from a practical

perspective [12,13,14].

Our algorithm is developed based on the meal delivery

model proposed by [7]. The paper aims to find an exact solution

to the delivery problem to minimize total service time of all

orders with all order information known before optimization,

which is far from reality. Our method is inspired by the pivotal

work of [2]. One of the differences between our works lies in

the generation of bundles. The bundle generation in [2]’s model

is the result of a single-step optimization. In our model, we

optimize bundles generation by considering orders’ temporal

and spatial distribution. In addition, our model focuses on

minimizing the freshness loss and maximizing the delivery

volume per unit of time, while their model concerns more about

the cost of couriers.

The main contributions of this paper are threefold: i) We

propose a heuristic algorithm to deal with bundle generation,

bundle pairing, route optimization, and task assignment in

MDRP. ii)A comparison with an existing algorithm and exact

solution is conducted for assessing system efficiency. iii)

Computational results of our algorithm are presented for

evaluating algorithm performances.

The remainder of this paper is organized as follows:

Section II describes the problem formulation. A heuristic

algorithm is developed in Section III to find optimal solutions.

Section IV conducts result analysis on algorithm performance

and system performance. Section V draws conclusions and

provides an outlook for future works.

II. PROBLEM FORMULATION

Consider an on-demand meal delivery system served by a

fleet of couriers, who are crowd-sourced freelancers and tend

to work for a shift voluntarily. As orders arrive throughout a

service day and order information is revealed dynamically,

instructions are sent to couriers based only on known requests.

In order to solve this dynamic problem, a rolling-horizon

approach is adopted in this paper. We separate the whole

service time evenly into multiple small time intervals of f

minutes. The system is then optimized at the decision point 𝑡𝑜𝑝𝑡,

which is the end of each time interval.

For time interval 𝑇 = {𝑡: 𝑡𝑜𝑝𝑡 − 𝑓 < 𝑡 ≤ 𝑡𝑜𝑝𝑡} , orders

placed in T or unserved in previous interval are waiting to be

assigned at 𝑡𝑜𝑝𝑡. R is the set of restaurants in the system. Each

restaurant r ∈ 𝑅 has an associated location. 𝑈𝑟 is the set of

orders to be assigned at restaurant r. Taking order o ∈ 𝑈𝑟 as an

example, its information includes placement timestamp 𝑃𝑜 ,

associated restaurant 𝑅𝑜 (which is r here), drop-off position 𝐷𝑜,

and ready timestamp 𝑟𝑜. For courier c, information includes the

start-timestamp 𝑆𝑐 and the off-timestamp 𝑂𝑐 of the day, as well

as the current location of the courier 𝐿𝑐.

Two strategies are considered for improving delivery

efficiency. On the one hand, orders from a same restaurant are

allowed to be grouped into a bundle, denoted as b, and delivered

on one route. Here we regard ready timestamp 𝑟𝑜 of the latest

ready order o in the bundle b as the bundle’s ready timestamp

𝑟𝑏. Note that any bundle b can only be picked up after its ready

timestamp 𝑟𝑏. On the other hand, up to two bundles from two

different restaurants can be seen as a bundle pair and be

delivered on one route.

A available courier that we can give instructions to at 𝑡𝑜𝑝𝑡

should be the courier c on duty (𝑆𝑐 ≤ 𝑡𝑜𝑝𝑡 ≤ 𝑂𝑐). In addition,

he is neither in route to pick up orders nor delivering orders at

this decision point. Note that a courier c cannot receive new

instructions after his off-timestamp 𝑂𝑐 but can keep delivering

orders which are assigned before. After receiving instructions,

couriers must take the bundles according to the instruction and

deliver orders according to the optimized route. In this paper,

we consider a fixed pick-up service time when a courier is

picking up a bundle in a restaurant. This service time is

independent of the number of orders in the bundle. Similarly, a

drop-off service time is counted on a courier’s arrival at a drop-

off location. A flow chart to represent the problem sequence at

a decision point is shown in Figure 1. Figure 2 demonstrates the

timeline of events to deliver an order.

Fig. 1. Flow chart of problem sequence within one optimization

Fig. 2. Timeline of events to deliver an order

For the optimization at each decision point, we have two

goals. The first is to improve delivery efficiency, which means

that couriers can deliver more orders per unit time. The second

is to reduce the freshness loss of orders.

For clarity, we list some important notations and related

descriptions used in section Ⅲ below:

TABLE I. NOTATION AND DESCRIPTION

Notation Description

𝑈𝑟 Set of all orders which are placed in restaurant r

C Set of all couriers available at this decision point
S Set of bundles of all restaurants in the system

Q Set of all single bundles and feasible bundle pairs

𝑁𝑡𝑜𝑡𝑎𝑙 Total number of all orders placed in the system

 𝑁𝑜,𝑟 Total number of all orders placed in the restaurant r

𝑁𝑑 Number of available couriers who are available at this
decision point

𝑁𝑏,𝑟 Number of bundles in a restaurant

𝑁𝑜,𝑞 Number of orders in a route q

𝑟𝑏 Last ready timestamp of order in bundle b

𝑟𝑜 Ready timestamp of order o

𝑅𝑜 Associated restaurant of order o.

𝑅𝑏 Associated restaurant of bundle b

𝐷𝑜 Drop-off position of order o.

𝛱𝑞,𝑐 Pick up timestamp if route q is assigned to courier c

𝑇𝑞 Time to deliver all orders of route q according to the

optimized route
β Penalty parameter for delivery delay

𝛼 Pick up delay tolerance time

θ Penalty parameter for freshness loss

o Order

r restaurant
c Courier in set C

q Single bundle or bundle pair in set Q with an optimized

route (we also call it a “route” in this paper)

t Deliver sequence number in optimized route

III. A HEURISTIC ALGORITHM FOR THE MEAL DELIVERY

ROUTING PROBLEM

The algorithm for optimizing the delivery strategies can be

divided into four steps. The first step is to combine unassigned

orders into bundles for each restaurant. Secondly, the generated

bundles are matched in pairs to find the feasible bundle pairs

that can be picked up by one courier. Then, delivery routes of

all generated bundles and bundle pairs are optimized to

minimize delivery time. Finally, optimized routes are assigned

to appropriate couriers.

A. Bundle Generation

To determine the number of bundles in restaurant r, we

first give a rough estimation on the target bundle size K at 𝑡𝑜𝑝𝑡

as follows:

𝐾 =
𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑑

The value is then compared with the number of available

couriers 𝑁𝑑 at this decision point, and the smaller value is taken

as the number of bundles 𝑁𝑏,𝑟 . This can help us avoid the

situation that there are too many bundles to be taken by couriers.

𝑁𝑏,𝑟 is defined as below:

𝑁𝑏,𝑟 = min {
 𝑁𝑜,𝑟

𝐾
, 𝑁𝑑}

With a known target bundle number 𝑁𝑏,𝑟 of restaurant r,

we follow the steps below to get a bundle list for the restaurant.

1) Generating a Draft List of Bundles Considering Spatial

Dimension

Aggregation degree, adopted as a measure of cost to

deliver a bundle, is defined as the sum of travel distance

between the drop-off positions of any two orders in the bundle.

First, we set up a binary variable 𝐵𝑏,𝑜 . If order o ∈ 𝑈𝑟 is in

bundle b, 𝐵𝑏,𝑜 = 1. Otherwise, 𝐵𝑏,𝑜 = 0. Then we define the

variable Aggregation Cost:

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡(𝑏)

= ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑜1
, 𝐷𝑜2

)

𝑜2∈𝑈𝑟𝑜1∈𝑈𝑟

∗ 𝐵𝑏,𝑜1

∗ 𝐵𝑏,𝑜2

A draft list of bundles considering spatial dimension is

generated when the sum of aggregation cost of all bundles is

minimized:

Min ∑ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑏)𝑏 (1a)

s.t. ∑ 𝐵𝑏,𝑜𝑏 = 1, ∀o ∈ 𝑈𝑟 (1b)

Here (1b) indicates that each order can only appear in one

bundle. According to value of the variable 𝐵𝑏,𝑜, we can obtain

a draft bundle list 𝐵𝑟,𝑑 of the restaurant r. This list can tell us

the order information in each bundle.

2) Further Optimizing Bundle List Considering Temporal

Dimension

We have two objectives to consider in temporal dimension.

One is to reduce the sum of delivery time of all bundles. The

other is to reduce the sum of all orders’ delay time. Combine

these two objectives into one total objective function. Then we

can optimize the draft bundle list 𝐵𝑟,𝑑 in this Procedure 1.

Procedure 1: Further Optimization

Input: 𝑈𝑟 , set of all orders which are placed in restaurant r.

 𝐵𝑟,𝑑, the draft bundle list which is generated above.

Output: 𝐵𝑟,𝑛𝑒𝑤, improved list of bundles.

1： /* Initial construction

2： 𝐵𝑟,𝑛𝑒𝑤 𝐵𝑟,𝑑

3： 𝐶𝑜𝑠𝑡 (𝑏) = 𝑆𝑒𝑛𝑑𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑏) + 𝛽 ∗
∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑑𝑒𝑙𝑎𝑦(𝑜)𝑜∈𝑏

4： Temporal Cost = ∑ 𝐶𝑜𝑠𝑡(𝑏)𝑏∈𝐵𝑟

5： For o ∈ 𝑈𝑟 do:

6： Remove o from its current bundle 𝑏𝑜

7： List all bundles (which contains 𝑏𝑜), find a

bundle 𝑏𝑛𝑒𝑤 to re-insert o to achieve minimum

Temporal Cost

8： Update 𝐵𝑟,𝑛𝑒𝑤 with inserting o into 𝑏𝑛𝑒𝑤

9： End

10： return 𝐵𝑟,𝑛𝑒𝑤

3) Assign Priority Levels to Bundles

Based on the updated bundle list 𝐵𝑟,𝑛𝑒𝑤 in Step 2, bundles

are assigned priority levels according to the following rules:

(1) The bundles with more orders have higher priority

levels.

(2) If two bundles with same number of orders, the one

have earlier ready time has higher priority level..

When couriers are limited in the system, bundles with

higher priority levels will be assigned to couriers first.

B. Combination of Feasible Bundle Pairs

Considering restaurants with close locations, bundles of

two restaurants are allowed to be grouped together for a higher

delivery efficiency of a route. A bundle pair is regarded as

feasible if its second bundle doesn’t suffer an excessive

freshness loss in the route, i.e., the courier can get the second

bundle within a tolerable delay time.

Procedure 2: Generate Feasible Bundle Pair

Input: S, set of all bundles in all restaurants,

𝛼, pick up delay tolerance time (𝛼 ≥ 0)

Output: Set Q of singles bundles and bundle pairs to be

assigned.

1： /* Initial construction

2： 𝑃 ∅

3： For b1 ∈ S do:

4： For b2 ∈ S \ {b1} do:

5： If 𝑟𝑏1 + 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝑅𝑏1, 𝑅𝑏2) ≤ 𝑟𝑏2 + 𝛼
 then:

6： P P ∪ {b1, b2}

7： End

8： End

9： End

10： Q P ∪ S

11： return Q

C. Calculation of Shortest Delivery Time of Bundles and

Bundle Pairs

For the previously generated bundles and bundle pairs, we

need to optimize their delivery routes to achieve the shortest

delivery time. For ∀q ∈ 𝑄 , we need to follow the below steps

to optimize the route:

First, we sort the orders in each bundle and each bundle

pair according to their ready timestamp, and label them

accordingly. Then, we set up a two-dimensional binary matrix

R to represent the route for delivery. The first dimension means

the sequence of delivery. The second dimension means the tag

of order, e.g., if order 1 is delivered as the second order in the

route, R [2,1] = 1. The optimization problem is formulated as

follows:

𝑀𝑖𝑛(∑ 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝑟, 𝐷𝑜)

𝑜∈𝑞

∗ 𝑅[1, 𝑜] +

∑ ∑ ∑ 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝐷𝑜1, 𝐷𝑜2)

𝑜1∈𝑞

 ∗ 𝑅[𝑡, 𝑜1] ∗ 𝑅[𝑡 + 1, 𝑜2]

𝑜2∈𝑞

)

𝑁𝑞

𝑡=1

(2a)

s.t. ∑ 𝑅[𝑡, 𝑜]𝑜∈𝑞 = 1, ∀ t ∈ [1, 𝑁𝑞] (2b)

∑ 𝑅[𝑡, 𝑜]𝑁𝑞
𝑡=1 = 1, ∀ 𝑜 ∈ 𝑞 (2c)

Here constraints (2b) indicate that in each time sequence of

delivery, the courier can deliver only one order. Constraints (2c)

guarantee that each order can only be delivered once.

D. Assignment Model

Based on the set Q of available single bundles and bundle

pairs and their optimized delivery route, tasks are assigned to

available couriers. The goal of the assignment is to improve

delivery efficiency and reduce the residence time of orders.

Here the residence time of an order means the time difference

between the pickup timestamp and its ready timestamp. We

define the variable:

𝑋𝑞,𝑐 ∈ {0,1}, indicates whether route q is assigned to

courier c.

The delivery efficiency E of courier c delivering route

𝑞 ∈ 𝑄 is calculated as below:

E(q,c) =
𝑁𝑞

(𝛱𝑞,𝑐+𝑇𝑞− 𝑇𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒)

It's important to note here that no matter whether the

courier picks up a single bundle or a bundle pair, here 𝑁𝑞

denotes the total number of orders in the route q. We take the

total time the courier needs to complete the task as the

denominator. The optimization time is ignored here.

Freshness loss FL is measured by the difference between

the picks up timestamp of the second bundle and the last ready

timestamp in the second bundle. It is given by:

FL(q,c) = 𝛱𝑞,𝑐 – max
𝑜∈𝑞

{𝑒(𝑜)}

Using these definitions, the optimization problem is

formulated as:

max ∑ ∑ [(𝐸(𝑞, 𝑐) − 𝜃 ∗ 𝐹𝐿(𝑞, 𝑐)] ∗ 𝑋𝑞,𝑐𝑞∈𝑄𝑐 − ∑ 𝑝 ∗ (1 − 𝑦
𝑜

)𝑜

(3a)

s.t. ∑ 𝑋𝑞,𝑐𝑞∈𝑄 ≤ 1, ∀ c ∈ C (3b)

∑ 𝑋𝑞,𝑐c ∈ C ≤ 1, ∀ 𝑞 ∈ 𝑄 (3c)

∑ ∑ 𝑋𝑞,𝑐𝑞∈𝑄(𝑜)c ∈ C ≤ 1, ∀ 𝑜 ∈ 𝑈 (3d)

∑ ∑ 𝑋𝑞,𝑐𝑞∈𝑄(𝑜)c ∈ C = 𝑦𝑜, ∀ 𝑜 ∈ 𝑈 (3e)

Constraints (3b) indicate that a courier can only be

assigned one route. Constraints (3c) guarantee that a route can

only be assigned to one courier. Constraints (3d) guarantee that

the assigned routes cannot contain the same order more than

once. Constraints (3e) guarantee that if an order is not included

in any of the routes assigned to real couriers, a penalty p is

added to the objective value.

IV. COMPUTATIONAL STUDY

In this computational study section, two indexed are

adopted to assess the algorithms and the dynamic system’s

performance:

1) The average click-to-door time (aCtD) of all orders

assigned to couriers in the system. Click-to-door time (CtD)

of an order indicates the difference between its drop-off

timestamp and its placement timestamp.

2) The average ready-to-pickup time (aRtP) of all orders

assigned to couriers in the system. Ready-to-pickup time

(RtP) of an order indicates the difference between its

pickup timestamp and its ready timestamp of an order.

A. Algorithm Performance in Different Data Size Insatnces

We generate instances with order, restaurant and courier

information based on open datasets provide by [15] to test the

algorithm’s performance. Table Ⅱ shows the characteristics of

the instances. Table Ⅲ demonstrates the performance of the

algorithm in different instances.

TABLE II. COMPARISON OF CHARACTERISTICS OF DIFFERENT

INSTANCES

Instance
Number of

Orders

Number of

Couriers

Number of

Restaurants

S1 20 8 4

S2 40 16 8

S3 60 24 12

S4 100 40 20

S5 200 80 40

TABLE III. COMPARISON OF ALGORITHM PERFORMANCE OF DIFFERENT

INSTANCES

Instance
Optimization Time

(s)

CtD

(min)

RtP

(min)

S1 1.67s 34.00 2.40

S2 5.26s 33.83 1.43

S3 12.34s 32.97 2.02

S4 40.64s 32.88 2.64

S5 186.71s 32.81 2.66

As can be seen from Table Ⅲ, the optimization time do

exponential growth as the number of orders increase. In the five

instances, the CtD and RtP lie around 33 minutes and within 3

minutes, respectively. The problem scale has no obvious

impacts on the two indexes. In addition, we found that CtD has

a slight advantage in instances with more orders.

B. System Performance

Instances with service period of 900 minutes are selected

for testing the algorithm in dynamic processes. The full

introduction of the datasets can be found in [15]. For clarity, we

list the key characteristics of the instances in Table IV.

TABLE IV. COMPARISON OF CHARACTERISTICS OF DIFFERENT

INSTANCES

Instance
Number

of orders

Preparation time

multifaction factor

Number of

restaurants

Courier

velocity

(m/min)

D1 252 1 93 320

D2 252 1.25 93 320

D3 252 1 93 427

D4 242 1 54 320

D5 242 1.25 54 320

D6 505 1 116 320

In order to study the impact of different optimization time

frequencies on the system, four instances are optimized with

time intervals of 5 minutes, 10 minutes, and 15 minutes,

respectively.

TABLE V. COMPARISON OF SYSTEM PERFORMANCE WITH VARIED

OPTIMIZATION TIME INTERVALS

Time

interval
5 minutes 10 minutes 15 minutes

Instance
aCtD

(min)

aRtP

(min)

aCtD

(min)

aRtP

(min)

aCtD

(min)

aRtP

(min)

D1 30.83 1.94 31.43 2.65 32.65 3.87

D2 33.94 1.93 34.57 2.64 35.72 4.25

D3 27.94 1.50 29.81 2.29 29.91 2.83

D6 31.83 2.43 32.35 2.89 32.74 3.58

From Table V, we can find that a decrease in optimization

time interval leads to shorter aCtD and aRtP in all the instances.

Therefore, we select 5 minutes as the default time interval

hereinafter.

Fig. 3 and Fig. 4 present the distribution of CtD and RtP in

four instances, respectively. Fig. 1 illustrates that in most time

intervals, orders can be delivered to customers between 20 to

40 minutes. As depicted in Fig. 2, the RtP is within three

minutes for most of the time intervals. However, orders in a few

time intervals suffer from a severe freshness loss due to high

demand and courier shortage in peak hours.

Fig. 3. Distribution of average click-to-door time in different time intervals in

four instances

Fig. 4. Distribution of average ready-to-pickup time in different time intervals

in all instances

C. Algorithm Comparison

A comparison of the solution obtained by our algorithm

and an existing algorithm proposed by [2] is conducted. The

results in Table Ⅵ indicate that our algorithm improves aCtD

and aRtP of the system slightly. We also compare the solutions

obtained by our algorithm and the exact solution proposed by

[4]. The details are demonstrated in Table Ⅶ.

TABLE VI. COMPARISON OF SOLUTIONS OBTAINED BY OUR ALGORITHM

AND EXISTING ALGORITHM

Four-stage heuristic

algorithm
Algorithm in [3]

Instance
aCtD

(min)

aRtP

(min)

aCtD

(min)

aRtP

(min)

0o50t100s1p100

(D1)
30.83 1.94 31.19 2.52

0o50t100s1p125

(D2)
33.94 1.93 34.67 2.27

0r50t100s1p100

(D4)
31.41 2.11 32.46 2.14

0r50t100s1p125

(D5)
35.88 1.41 36.75 2.16

TABLE VII. COMPARISON OF SOLUTIONS OBTAINED BY OUR ALGORITHM

AND EXACT SOLUTION

Four-stage heuristic

algorithm
Exact solution in [4]

Instance
aCtD

(min)

aRtP

(min)

aCtD

(min)

aRtP

(min)

0o50t100s1p100

(D1)
30.83 1.94 29.81 1.46

0o50t100s1p125

(D2)
33.94 1.93 33.40 1.23

0r50t100s1p100

(D3)
31.41 2.11 30.76 1.13

0r50t100s1p125

(D4)
35.88 1.41 34.66 0.97

V. CONCLUSION

This paper proposed a four-stage rolling horizon

optimization algorithm to solve MDRP. The method can be

employed based on real-time order information. The algorithm

first generates bundles according to orders’ spatial and temporal

distribution. For improving delivery efficiency, up to two

bundles are allowed to be delivered on one route. Thus,

secondly, we find feasible bundle pairs. Then, routes for

delivering any single bundle or a bundle pair are optimized,

respectively. Finally, the routes are assigned to available

couriers.

Through result analysis, we can conclude that our

algorithm is able to solve MDRP with up to 200 orders within

about 3 minutes. Additionally, slightly improved service

quality is observed in scenarios with higher demand. Through

a comparison of the dynamic system solved with different

optimization frequencies, smaller aCtD and aRtP are obtained

when reducing the time interval. According to the distribution

of aCtD and aRtP of orders, we find that orders in most time

intervals can be picked up and delivered in time. A comparison

of our algorithm with the existing algorithm and exact solutions

is conducted as well. Our algorithm is able to produce more

efficient and accurate solutions than the existing algorithm.

As limitations of this work, the heuristic algorithm

considers no load capacity of couriers, which plays a great role

when serving a huge number of orders in reality. Thus, we will

include this constraint to improve the algorithm in the future.

REFERENCE

[1] J. Wang, X. Shen, X. Huang, and Y. Liu, “Influencing Factors of the
Continuous Usage Intention of Consumers of Online Food Delivery

Platform Based on an Information System Success Model,” Frontiers in

Psychology, vol. 12, Aug. 2021.

[2] D. Reyes, A. Erera, M. Savelsbergh, S. Sahasrabudhe, and R. O’Neil. The

meal delivery routing problem. Optimization Online, 2018.

[3] R. R. S. van Lon, E. Ferrante, A. E. Turgut, T. Wenseleers, G. Vanden

Berghe, and T. Holvoet, “Measures of dynamism and urgency in

logistics,” European Journal of Operational Research, vol. 253, no. 3, pp.

614–624, Sep. 2016.

[4] Karsten Lund, Oli B.G. Madsen, and Jens M. Rygaard. "Vehicle routing

problems with varying degrees of dynamism." Technical Report IMM-

REP-1996-1, Department of Mathematical Modeling, The Technical

University of Denmark, May 1996.

[5] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, "Making dynamic

ride-sharing work: The impact of driver and rider flexibility,
"Transportation Research Part E: Logistics and Transportation Review,

vol.91, pp. 190 -- 207, Jul. 2016.

[6] X. Wang, N. Agatz, and A. Erera, "Stable Matching for Dynamic Ride-

Sharing Systems," SSRN Electronic Journal, 2014.

[7] B. Yildiz and M. Savelsbergh, “Provably High-Quality Solutions for the

Meal Delivery Routing Problem,” Transportation Science, vol. 53, no. 5,

pp. 1372–1388, Sep. 2019.

[8] G. Berbeglia, J. Cordeau and G. Laporte, "Dynamic pickup and delivery

problems," European Journal of Operational Research, vol. 202, (1), pp.

8-15, 2010.

[9] C. Archetti, D. Feillet, and M. G. Speranza, “Complexity of routing

problems with release dates,” European Journal of Operational Research,

vol. 247, no. 3, pp. 797–803, Dec. 2015.

[10] M. W. Ulmer, B. W. Thomas, and D. C. Mattfeld, “Preemptive depot

returns for dynamic same-day delivery,” EURO Journal on

Transportation and Logistics, Apr. 2018.

[11] M. A. Klapp, A. L. Erera, and A. Toriello, “The One-Dimensional

Dynamic Dispatch Waves Problem,” Transportation Science, vol. 52,

no. 2, pp. 402–415, Mar. 2018.

[12] I. Dayarian and M. Savelsbergh, “Crowdshipping and Same‐day
Delivery: Employing In‐store Customers to Deliver Online

Orders,” Production and Operations Management, vol. 29, no. 9, Jun.

2020.

[13] S. A. Voccia, A. M. Campbell, and B. W. Thomas, “The Same-Day

Delivery Problem for Online Purchases,” Transportation Science, vol.

53, no. 1, pp. 167–184, Feb. 2019.

[14] N. Azi, M. Gendreau, and J.-Y. Potvin, “A dynamic Vehicle routing

problem with multiple delivery routes,” Annals of Operations Research,

vol. 199, no. 1, pp. 103–112, Oct. 2011.

[15] “Meal Delivery Routing Problem Test Instances.” GitHub.

https://github.com/grubhub/mdrplib (accessed Nov. 11, 2022).

https://github.com/grubhub/mdrplib

